## Higher-order initial-value problems

1. Convert this $2^{\text {nd }}$-order IVP into a system of two first-order IVPS

$$
\begin{aligned}
y^{(2)}(t) & =\sin (t)-2 y^{(1)}(t)-3 y(t) \\
y(0) & =7 \\
y^{(1)}(0) & =-5
\end{aligned}
$$

$$
\mathbf{w}(t)=\binom{w_{0}(t)}{w_{1}(t)}=\binom{y(t)}{y^{(1)}(t)}
$$

Answer: $\mathbf{w}^{(1)}(t)=\binom{w_{1}(t)}{\sin (t)-2 w_{1}(t)-3 w_{0}(t)}$

$$
\mathbf{w}(0)=\binom{7}{-5}
$$

2. Convert this $3^{\text {rd }}$-order IVP into a system of three first-order IVPs

$$
\begin{aligned}
u^{(3)}(t) & =-t u^{(2)}(t) u(t) \\
u(0) & =7 \\
u^{(1)}(0) & =4 \\
u^{(2)}(0) & =2
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{w}(t) & =\left(\begin{array}{l}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t)
\end{array}\right)=\left(\begin{array}{c}
u(t) \\
u^{(1)}(t) \\
u^{(2)}(t)
\end{array}\right) \\
\text { Answer: } \mathbf{w}^{(1)}(t) & =\left(\begin{array}{c}
w_{1}(t) \\
w_{2}(t) \\
-t w_{2}(t) w_{0}(t)
\end{array}\right) \\
\mathbf{w}(0) & =\left(\begin{array}{l}
7 \\
4 \\
2
\end{array}\right)
\end{aligned}
$$

3. Convert this $4^{\text {th }}$-order IVP into a system of four first-order IVPs

$$
\begin{gathered}
x^{(4)}(t)=-5\left(x^{(2)}(t)+1\right)\left(x^{(3)}(t)+x(t)+t\right) \\
x(0)=2 \\
x^{(1)}(0)=-4 \\
x^{(2)}(0)=5 \\
x^{(3)}(0)=3 \\
\mathbf{w}(t)=\left(\begin{array}{c}
w_{0}(t) \\
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t)
\end{array}\right)=\left(\begin{array}{c}
x(t) \\
x^{(1)}(t) \\
x^{(2)}(t) \\
x^{(3)}(t)
\end{array}\right) \\
\text { Answer: } \mathbf{\mathbf { w } ^ { ( 1 ) }}(t)=\left(\begin{array}{c}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t) \\
\left.-5\left(w_{2}(t)+1\right)(t)+w_{0}(t)+t\right)
\end{array}\right) \\
\mathbf{w}(0)=\left(\begin{array}{c}
2 \\
-4 \\
5 \\
3
\end{array}\right)
\end{gathered}
$$

4. In all the above questions, we always wrote that the $n^{\text {th }}$ derivative is described in terms of lower derivatives and the function itself. Is this a fair assumption to make? Is it not possible that we may have a system where this is not the case?

Answer: Yes, but the implicit function theorem says that this is possible essentially everywhere.
5. How would you express the right-hand side of the ode to a function in Matlab?

Answer:

$$
\gg f=@(t, w)\left(\left[w(2) ; w(3) ; w(4) ;-5^{*}(w(3)+1) *(w(4)+w(1)+t)\right]\right) ;
$$

You must remember that in Matlab, vectors start at index 1, but for higher-order odes, it is often easier to understand if you represent the $k^{\text {th }}$ derivative of the function by $w_{k}(t)$.
6. For Question 4, if you were to approximate $\mathbf{w}\left(t_{k}\right)$ with $\mathbf{w}_{k}$ where $t_{k}=t_{0}+k h$, at each step, you would have a 4-dimensional vector. What do the entries of that 4-dimensional vector represent?

Answer: $\quad$ The first entry of the approximation $\mathbf{w}_{k}$ would approximate $x\left(t_{k}\right)$.
The second entry of the approximation $\mathbf{w}_{k}$ would approximate $x^{(1)}\left(t_{k}\right)$.
The third entry of the approximation $\mathbf{w}_{k}$ would approximate $x^{(2)}\left(t_{k}\right)$.
The fourth entry of the approximation $\mathbf{w}_{k}$ would approximate $x^{(3)}\left(t_{k}\right)$.
7. Suppose you had approximations to the solution as described in Question 6. Suppose you also wanted to approximate the solution on the interval $\left[t_{k}, t_{k+1}\right]$. Could you find a polynomial that matches the approximations of the function at $t_{k}$ and $t_{k+1}$ and also matches all four derivatives at each of the points?

Answer: In theory, yes, but you would have to use a spline of degree 9 .

